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In [6] and [;1 a  computer  oriented  algorithm  has been [7j A. Jameson  and M. Rossi, "Optimization of the  average  response of 
linear systems of constrained configuration,'' Grumman  Aerodyna- 

to find the to (34k(363. At the present mics, Bethpage, N,Y,. Tech, Rep. 393-68-7. November 1968, 
time  the  extension of this  algorithm  to  the multiple structure - 

constraint  problem is being investigated. 
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On the Input and Output Reducibility of 
Multivariable Linear Systems 

MICHAEL  HEYMANN 

Abstvoef-By introducing into a constant linear system (F.  G, H) with 
input vector u and  output vectory an open-loop control u = Pr and  observer 
z = Qy, a new constant linear system (F,   GP,  QH) resalts which bas input 
vector L' and  output vector -7. The problem investigated is one  of constructing 
(F, GP, QH) so that L' and t have minimal dimension,  subject to the condition 
that the controllability and observability propertierties of (F, G, H) are preserved. 
It is shown that when  the scalar field 9 (over  which the qstem is defined) 
is inhite, the minimal dimensions of c and z are essentially independent 
of the specific values of the input  and output matrices G and H.  It is also 
shown that this is not  the case when 9 is finite. Fnrthermore, an algorithm 
is presented for the constroction of the minimal  input  (minimal  output) 
(F,  GP. QH), which Is directly represented in a useful canonical form. 

I. INTRODUCTION 

C ONSIDER a  constant  linear system given  by a  triple 
( F ,  G, H ) ,  where F, G, and H are  constant n x n, 

n x V I ,  and p x n matrices ( m ,  p I n)  with scalars in an 
arbitrary field 2 Thus (F,  G, H )  will be considered as the 
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basic data required to describe systems of either of two 
types : 

1) a  [continuous-time)  constant  real (3 = &) linear 
dynamical system of the form 

J: = H.u 

relating  a real input vector 14 = u ( r )  to a real output vector 
y = y ( t )  through  a real state vector .x = x(t): 

2) a  (discrete-time)  constant  linear  system of the  form 

x ( k )  = FX(k - 1) + G u ( ~  - 1) 

y ( k )  = H s ( k )  

where k = 1,2, . . . is the  (discrete)  time  variable and  the 
scalar field  is arbitrary. Thus all  entries in the  vectors and 
matrices are in 9 and all operations  are carried out in this 
field. (When 9 is finite, eg.:  the  integers  modulo a  prime, 
this system is frequently referred to  as a finite state  machine.) 

Let Q, s [G,  FG, . . . ~ F"- 'GI be the n x mn controlla- 
bility matrix of ( F ,  G,  H ) ,  and let Q, = [ H T 3  F T H T ,  . . , 
(FT)" - lHT]  be  its n x p n  observability  matrix. The 
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controllable  subspace of ( F ,  G, H ) ,  denoted by S,,  is the 
subspace of the  state  space V" (n-dimensional  vector  space 
over 3) spanned by the  columns of Q,. Thus S,  is the 
largest  subspace of I/" that  the  control u can influence. 
Similarly, the  observable  subspace S,of(F, G ,  H )  is the  linear 
span of the  columns of Q,, and it  is  the  largest  subspace 
of V" in which the  state influences the  output. 

Consider the open-loop  control for ( F ,  G, H )  given as 
11 = Pr, where t' is a new input vector of dimension k I n1 
and P is an m x k constant  matrix with entries in 3 
Similarly, let z = Qy be a new output device. where 7 IS . a 
new output vector of dimension k' I p and Q is a k' x p 
constant  matrix with elements in 9? 

It is required that the controllable  and  observable  sub- 
spaces of the  resultant system ( F ,  GP, Q H )  be the  same as 
the  controllable  and  observable  subspaces, respectively. of 
the  original system ( F ,  G, H). In applications it may be 
desirable to introduce  such new input  and  output devices 
with the  additional  requirement  that k and k' be as small as 
possible. Therefore, the following questions  are of interest 
with regard to the preceding setup  and  the  minimality of 
k and k'. 

1) Given  a  state  transition  matrix F ,  what are the minimal 
dimensions k and f i  for which there exist JZ x k and k x 17 

matrices G and H so that  the resulting system ( F ,  G. H )  is 
both  controllable  and observable? 

2)  Consider  a system ( F ,  G ,  H )  with controllable  sub- 
space S, and observable  subspace S o .  Under  what  condi- 
tions  are the  minimal values for k and R dependent  only on 
F and  on the F invariants of S ,  and So? (By the F invariants 
of the  F-invariant  subspaces S ,  and S ,  we are referring to 
the  invariant  polynomials q i  of the restrictions of the 
decomposition in Theorem 1 (Section 11) to S,  and S o ,  
respectively.) 

3) Given the  minimal values for k and I?: how can  the 
matrices P and Q be constructed? 

Question I), which is elementary (see discussion in 
Section I1 and also  Theorem 2, Section III), was investigated 
by Vogt and  Cullen [l] for the case when 9 = 9. This 
question was also fully answered by Kalman [2] in a  more 
general and  abstract context. Vogt and  Gunderson [3] 
discussed, for the special case when 9 = R ,  some of the 
problems which are  studied for the general  case here. How- 
ever, even in that case, their  analysis is incomplete since 
it ignores  question 2) (which is most  crucial for the validity 

larger than k ( I ? )  and coincides with k (k') only in very special 
cases.  even when .F = 2. 

The  contribution of the present paper is in fully analyzing 
and answering  questions 2) and 3). Specifically, it is shown 
that when the field F is infinite, 2) can always be  answered 
affirmatively: i.e.. the minimal values of k and k' depend 
only on F and  on  the F invariants of S ,  and S o .  Moreover, 
when ( F ,  G,  H )  is controllable  and observable,  then  the 
minimal k and k are  dictated only by F .  In  the case when 
9 is a finite field, no general  statement  can be made, as is 
exhibited by an example.  (Although the finite field case is 
not  further  investigated, it  can  be  shown  that  the  main 
results for infinite fields are  also valid for finite fields, pro- 
vided the characteristic of the field is larger  than  the  dimen- 
sion J? of the  state  space V".) Also, an algorithm  is  developed 
for the  construction of P (a  similar  algorithm is valid for Q) 
that simultaneously  transforms  the  resultant system ( F ,  GP, 
H) into a useful canonical  form which resembles one of the 
canonical  forms  presented by Luenberger [5] .  

The  paper is organized as follows. In Section I1 certain 
preliminary  concepts  are defined. (For  background material 
in linear  algebra  the  reader is referred to  Gantmacher [6].) 
The main  results  on  input and  output reducibility are given 
in Section 111 and  are  further developed in Section IV, 
where an algorithm is presented for construction of P which 
immediately  represents the resultant  system in canonical 
form. Some  generalizing  remarks  are  presented in Section V 
and the paper is concluded in Section VI. A  fundamental 
theorem on which the  main  results  of  the  present  paper 
hinge is stated  and  proved in the  Appendix. 

11. PRELIMINARIES 

Let F be a  linear operator in an n-dimensional vector 
space V" over an arbitrary field 9 Let I be  an  F-invariant 
subspace of V", and let the set of vectors g, , . . . , g,, E I be 
a  generating set for I ; i.e., every vector g E I can  be expressed 
as  a  linear  combination of vectors of the form Fjg,, where 
i = 1, . . . , m and j = 0,1,2, . . . . Let C be the  collection of 
all sets of vectors  generating I .  (C is clearly not  empty since 
it contains every basis of I . )  Generating  sets in the  collection 
C which contain  the smallest number of component  vectors 
are called minimal getwatij?g sets for I. 

The following well-known theorem of linear  algebra is of 
interest here. 

of the whole paper-see specifically the first paragraph of Theorern 11 
Section 111) and  takes for granted an affirmative answer to 
it.  As is shown in the  present  paper,  question 2) has an 
affirmative answer only when the underlying field 9 is 
infinite, and  the  proof of this fact is  by no  means trivial 
(even when J = 9). Albertson and Womack [4] recently 

Relative to a given linear operator F ,  the  space V" (over 
an  arbitrary field 9) can be decomposed  into  a  direct sum 
of cyclic subspaces I 1, I , ,  . . . , I ,  with minimal  polynomials 
ql, q2, .  . . , qnrr respectively, such that 

investigated the  problem of finding: among  the  columns of V" = I1 0 I ,  0 . . . @  I n t .  
G (rows of H ) ,  a  minimal  subset which preserves controlla- 
bility (observability) when 9 = 92. This is a  subproblem of 
question 2), in which the  columns of P (rows of Q) are 

Moreover, q 1  coincides with $, the  minimal  polynomial of 
V", and for each i, vi+ divides vi.  

restricted to be unit vectors (natural basis elements). 
Clearly, the  number of vectors in such  a  subset is usually See [6, p. 187, theorem 31 
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The  standard proof of Theorem 1 is based on the  exhibi- 
tion of a cyclic  generating  set of vectors for V", i.e.$ a set of 
vectors g , ,  . . . , g ,  with the property  that gi generates I i ,  
i = 1, . . . , m. A cyclic generating set is clearly also  a  minimal 
generating set for V". (In fact, g ,  generates  a cyclic subspace 
of V" of highest possible dimension, and each succeeding 
gi generates  a cyclic subspace of highest dimension of I/" 
modulo  the  sum of the preceding cyclic subspaces.) 

Let k ,  , . . . , k ,  be the  dimensions of the cyclic subspaces 
I , ,  . . . ~ I,,, in Theorem l1 and let (8,: . . . , g,] be a cyclic 
generating set for V" (relative to the operator F ) .  Let 
x, . .  . . . ynt be a set of vectors  such  that 

a, = g1 

a2 g2(mod I , )  

x, = g,,(mod I ,  + . . . + I,- ,). 

It  is evident that a, generates I ,  and, for each i > 1, x i  
generates Zi(mod I ,  + . . . + I i -  ,). Thus the vectors 

r,,Fal....,Fk'-1~1,~2,..., F k 2 -  1 a 2 : " ' , % m . " ' ,  Fkm-  r,, 

and similarly, the rows of H form (relative to FT) a  generat- 
ing set for the  observable  subspace. Let 9 ( G )  denote  the 
linear  span of the  columns of G and C,,,,[S,] be the collec- 
tion of all generating  sets of S ,  which are  contained in 
S?(G). Clearly. Cp(G)[Sc] is a subset of C[S,],  the  collection 
of all generating  sets for S , .  Similarly, define U ( H T ) ,  
CP(H~)[So], and C[S,]. The central  questions  dealt with in 
the  present  paper can now be stated precisely as follows. 

1) Under what conditions does C,,,,[S,] contain  a 
minimal  generating set for S,; i.e., under  what  conditions 
is the size of the smallest generating set for S, which is 
contained in CJ(G)[SJ equal to the size of the smallest 
element in C[S,]? (An equivalent  question is also posed 
regarding CYLHT)[SO] and C[S,]). 

2) How can such  a  minimal  generating set  be constructed? 
It is  well known (see Kalman [7]) that ( F ,  G, H )  can be 

split  into  a  controllable  (observable)  subsystem and  an un- 
controllable  (unobservable) subsystem so that the con- 
trollable  subspace s, (the  observable  subspace S o )  of the 
original system essentially constitutes  the whole state space 
in the  controllable  (observable) subsystem. Furthermore,  the 
system can be split into four interconnected subsystems 

are linearly independent and form a basis for V". The set 
of vectors {z, , . . . 9,) is called a semic~clic generating  set 
for V" and  the basis a semicyclic  basis. Clearly, a semicyclic 
generating set  for I/" is a  minimal  generating  set. 

I t  can be readily verified  by direct computation  that in a 
semicyclic basis for V" the operator F is given by the 
matrix F,: 

only one of which is both  controllable  and observable, 
whereas the  others  are  either  completely  uncontrollable or 
unobservable or  both. Henceforth it will be assumed, 
without  loss of generality, that the appropriate decomposi- 
tion  has  already been performed  and that  the system 
under  consideration is controllable  and/or observable as 
the  case  may  require. 

The following main result of this  paper is a direct con- 
sequence of Theorem 4 (see the  Appendix). 

Theorem 2 

where, for i = 1 , .  . . , m, FIi is the  companion  matrix of 
( p i  = , ikv  + ail i"-  + xik, (of Theorem 1) given by 

r o  o . . .  

and F'' ( j  > i) are  matrices with zero elements except 
(possibly) in the last columns. In the  case when a semicyclic 
basis is also  a cyclic basis, then  the  submatrices F'j are 
identically zero. 

111. INPUT AND OUTPUT REDUCIBILITY 

Let ( F ,  G, H )  be a  constant  linear system over an infinite 
field Z where F ,  G, and H are n x n, n x In, and p x 17 

matrices, respectively. Let the  minimal  generating  sets for 
the  state  space V contain k vectors (i.e.* V" splits  according 
to  Theorem 1 into k cyclic invariant  subspaces I , ,  . . . , I k ) .  

Then: 
a) (F ,  G ,   H )  is controllable if and only if m 2 k and there 

exist k vectors 8, , - . .  , & E Y ( G )  such that the system 
(F ,  G, H )  is controllable, where is the n x k matrix 

b) (F,  G,  H )  is observable if and only if p 2 k and  there 
exist k vectors i l , .  .. , i i k  E 9 ( H T )  such that (F ,  G, A) is 
observable. where is the k x n matrix [h, , . . . ~ id*. 

It is clear in view  of Theorem 4 in the  Appendix and the 
example following it that  Theorem 2 is generally invalid 
for systems defined over finite fields, and, in particular, it 
is not valid for finite state  machines. 

Several interesting  observations  can be made with regard 
to  Theorem 2. 

1) Let (F, G. H )  be a controllable  and  observable  system 

[E-, 9 . .  ., EJ. 

Consider  a  linear system ( F .  G, H )  with controllable  sub- over an infinite field. Then  the m-dimensional control  vector 
space S ,  and observable  subspace So. It is evident from the u can be replaced by a new k-dimensional control vector L', 
discussion in Section I1 that the columns g , ,  . . . ~ g ,  form which is related to u by u = PC, with P an m x k matrix 
(relative to F) a  generating set for the  controllable  subspace, of rank k. Similarly, the output vector y can be replaced 

. ,  , , 
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by a k-dimensional vector z such that z = QJ, with Q a 
k x p matrix of rank k. The  important  consequence of 
Theorem 2 is that  there exist proper choices of P and Q 
so that the  resultant system (F,   GP,  Q H )  is controllable  and 
observable. 

2) The new control vector L' can be chosen so that  the 
system is split into k unidirectionally  connected sub- 

' systems, each of which is controllable by a diflerent single 
component  oft'. A similar  choice can be made for the output 
vector z with regard to  observability.  This  observation is 
based on  the fact that (see proof of Theorem 4) the vectors 
2, . . . , g k  and  the vectors h", , . . . , h"k can be chosen to form 
semicyclic generating  sets  for V". 

This last fact will be further  studied in the next section, 
where a  corollary to Theorem 2 is presented to the effect 
that the system (F ,  GP, Q H )  can  be reduced directly into 
certain useful canonical forms. 

IV.  CANONICAL FORMS OF REDUCED SYSTEMS 

From this  section  on  it will be assumed  throughout  that 
the field 3 is infinite. The following corollary to Theorem 2 
is  easily  verified by the use of the  constructive proof of 
Theorem 4 and direct  computation. 

Corollary 1 

a) If the system of Theorem 2 is controllable,  then  there 
exists a  transformation P ( m  x k matrix) on  the  input space 
and a  nonsingular  coordinate  transformation T (n  x 17 

matrix)  on  the  state  space  such that  the system (TFT- ' ,  
T G P ,   H T - ' )  is  controllable  and  the matrices T F T - '  and 
T G P  have the  canonical  representations 

O 1  

I G I ,  I 
L --I 

where, for j = 1,. - .  , k, Frj is the  companion  matrix of qj 
(the minimal  polynomial of Z j )  as given in Section 11, and 
where, for j = 1,. . . , k, GrJ is a p j  x k matrix ( p j  is the 
dimension of the j th invariant  subspace) given as 

where GiJ' is a 1 x j matrix of the form [0, . . . ,01 11, G;; is 
a 1 x (k - j )  zero  matrix, G;; is a ( p j  - 1) x j zero  matrix, 
and c;J2 is a ( p j  - 1) x ( k  - j )  matrix with unspecifiable' 
elements. 

' These elements are unspecifiable in the sense that they depend  both 
on the system parameters  and  the  particular  transformations T and P 
chosen. 

b) If the system of Theorem 2 is observable, then  there 
exists a  transformation Q (k  x p matrix)  on  the  output 
space and a  (nonsingular)  coordinate  transformation T 
( n  x n matrix)  on the state  space such that the system 
(TFT- ' ,  TG,  Q H T - ' )  is observable and  the matrices 
T F 7 - l  and Q H T - '  have the  canonical  representations 

FTl 0 . . .  0 

T F T - ' = F T = [ ;  0 FT2 ; . .  . ' . 01 
. FTk 

OH?-' = RT-' = RI = [ R I I ; * * , E i l , ]  

where, for j = 1,. .. , k, F t  is the  transpose of FI .. the 
companion  matrix of qj as given in Section 11, and > I j  is 
a k x p j  matrix ( p j  is the  dimension of the j th invariant 
subspace) given as 

- w:; RjJ2 
= [8;; 8 ; ]  

where R:J' is a j x 1 matrix of the form [0, . . . ~ 0, I]=, fii,z 
is a j x ( p j  - 1) zero  matrix, Bi; is a (k - j )  x 1  zero 
matrix,  and 8;,z is a ( k  - j )  x ( p j  - 1) matrix with un- 
specifiable elements. 

The following are some  pertinent  remarks  regarding  this 
corollary. 

1) In  a  controllable  and  observable system (F ,  G, H ) ,  one 
cannot, in general, find T P, Q so that  both TE and f i T - '  
are simultaneously in canonical form;  that is, if T G  is in 
canonical  form,  then RT-'  is generally not,  and vice versa. 

2 )  The  transformations T and P or T and Q are  not 
unique and neither are  the canonical  representations ; i.e., 
there exist many choices of transformations T and P or 

and Q, each of which leads to different elements in c;J2 
or in E?:,?. However: the  number of unspecifiable elements 
is independent of the choice of T and P or T and Q. 

3) The  construction  of  the  canonical  representation is 
nontrivial:  there exist transformations T that  take F into 
FI for which there do  not exist P that  transform T G  into 
G I  (and similarly for T and Q). 

An algorithm will now be developed for construction of 
T and P that transform  a  controllable system (F ,  G. H )  into 
a  canonical  representation of Corollary  la). A similar 
algorithm  can be developed for construction of T and Q 
that transform an observable system into canonical form. 
The details of this  algorithm  are left to the  reader. 

It is convenient to  take F in  its  Jordan canonical form, 
that is, 

F = diag [J(;ll, r l  '). J ( A 2 ,  rI2),  . . . , J(E.,, r lq) ,  . . . , J ( i q ,  rkq)] 

where 
k q  1 rij = I; = dim ( F )  

j = l  j = l  
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the , I j $  j = 1,. . . , q: are  the  distinct  (complex) eigenvalues 
of F ,  J ( 2 ,  r )  is the r x r Jordan block with eigenvalue 1. 

dim ( J ( A j ,  r i j ) )  2 dim (J(3.j ,  ri+ l,j)), i = 1,. . . , k - 1 

Necessary and  sufficient  conditions will now be stated 
for  a  vector g to have II/ (the  minimal  polynomial of V”) as 
its  minimal  polynomial.  First  the special case where k = 1 
(cyclic space) is considered. 

Lemma 1 
Let F be a  linear operator  on V” in its Jordan form, with 

eigenvalues A1 . . ~ i.e., 

F = diag [J(L,, rl): J ( & ,  rZ), . + . , J(&$ r,)] 

such that V” is cyclic and  has a  minimal  polynomial $. Then 
a vector g = (gl , . . . , g,) (in the  same basis as F )  has II/ as 
its minimal  polynomial if and only if the  components 

Renzark: A result related to Lemma 1 stating necessary 
and sufficient conditions for controllability of a system 
( F ,  G, H )  when F is in Jordan canonical  form was stated 
by Kalman [SI and later  restated and proved by Chen  and 
Desoer [9]. With slight modification  their  proof  applies 
also to this  lemma. 

Now  the  general case when k 2 1 (i.e., when the  space is 
not necessarily cyclic) is considered. 

grl,gr,+r2,...,gnofgarenonzero. 

Theorem 3 
Let F be a  linear  operator on I/” in  its  Jordan form, with 

eigenvalues ,I1,. . . , ,Iq and minimal  polynomial $. Then 
a vector g = (gl , . . . , g,) has $ as its  minimal  polynomial 
if and  only if, for each l j ,  j = 1,. . . , q, the  component of g 
corresponding  to  the  last  row of at least one3  Jordan block 
of ,Ij of maximal  dimension is nonzero. 

Proof: The proof follows readily from the fact that V” 
splits into  the  direct sum of cyclic invariant  subspaces 
(Theorem 1) and from Lemma 1. 

The following is an  algorithm for construction of the 
transformations T and P that  take a  controllable  linear 
system ( F ,  G, H )  into the  canonical  representation of 
Corollary  la).  The  algorithm is valid in view  of the  preceding 
theory  and specifically Lemma 2 and Theorems 3 and 4. 
Certain  details which do  not follow directly  from  the pre- 

Note  that  there may be more  than one Jordan block of maximal 
dimension for a given eigenvalue. 
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ceding theorems  can be readily verdied by direct  com- 
putation. 

Algorithm 
Let ( F ,  G, H )  be a  controllable  linear system. Let F have 

eigenvalues 2 ,  ~ . . . , , l q 2  and let V” split into k cyclic invariant 
subspaces (i.e., the highest multiplicity of Jordan blocks 
for any single eigenvalue is k) .  Assume that F is in Jordan 
form 

= diag[J(~l,rll”~(LZ,r12),..’,~(~q~rlq)],’’’, J ( l q , r k q ) l  

where 

dim (J(;Lj, r i j ) )  2 dim (J( ,I j ,  pi+ l,j)), i = 1,. . . , k - 1 

and 
k q  k 

rij  = pi = n 
i = l  j = 1  i =  1 

where p i  is the  dimension of the  ith cyclic subspace. 

Step 1 : 
a) Construct  a  vector 8, = ai lg i ,  where  the gi 

are  the  columns of G and a, # 0, such that  in E l  the r1 lth, 
(rl + rl,)th, . . . , (rl + . . . + rl,)th  components  are  all 
nonzero. 

b)  Construct  the n x I Z  (nonsingular)  linear  trans- 
formation Tl such that 

T;’ = [gl,Fgl,*..,FP1-lA g1,ep,+1,..-:en1 

where ej is the jth column of the n-dimensional unit matrix. 
c)  Obtain F1 and G, as 

Fl = T1FT;’ = diag[F,l,J(,Il,r,l),~..,J(Lq,r,,),-~-, 

w , ,  pkq) j  

where FI1 is the  companion  matrix of the  minimal  poly- 
nomial ql = @ of V“ and 

G I  = T I ~ I  = [ T I ~ I ~  7’1g2, Tlg3, . . . ,  Tg,] 

where Gl = [g, , g 2 ,  . . . , g,J. 
Step 1 ( I  = 2, . . . , k) : 

a) Construct  a vector g I  = CYl  ail(Tl . . . T -  ,)gi, where 
all # 0, such that in the (pl + . . . + p I -  + r,,)th, (pl + 
. . . + pl -  + r l ,  + r12)th,. . . , ( P I  + . . . + pJth  components 
are  nonzero. 

b)  Construct  the n x 11 (nonsingular)  linear  transforma- 
tion 7; such that 

T;’ = [el,e,:...,e,, - , : 9 , , F 1 - , g , , . . . ,  
FPI- 1- 

1-1 gl,epl+...+p,-l:....e~ 

where is g1 with the first p1 + .. . + pl -  components 
replaced by zero. 

c)  Obtain F1 and G,  as 

F1 = T F 1 -  T;  = diag [hI, . . . , F I I ,  J(Al ? rl7 . . . , 

J(Jq 9 + 1 , qh  . ’ 9 J ( i q  9 rkq) l  
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where 

G ~ = ( 7 ; ~ ~ ~ ~ ~ T ~ ~ ~ , ~ ~ ~ , ~ ~ , ' 7 ; ~ l ~ ~ ~ T l g r + l , ~ ~ ~ ,  

7; - 1 . . .Tlg,?*). 
Step k + 1 : 

Let T = & .  Tk- . . . TI and let P, be the  matrix 

P, = p 1  z2, a22 0 . . .  . . . :j 
rr,l %I2 %k 

Then 

F~ = F~ = T F T - 1  

and 

G; = TGP,  

where G; is the  matrix  composed of the first k columns of 
G, with  the jth column 

g j  = '&. . . T.6. = (gy, . . . ,gAj), j = 1,. . . , k,  
Ja J 

being of the  form 

g" = (1,0,.. . ,0) 
and 

g'j=(g;j,. . . ,gbjl+ . . . + p j , l : O , . . . , O ) r  j = 2 , . . . , k  . 

Step k + 2: 

that P = P,P2 and GI = G;P2. 
Construct  (in  the  obvious way)  a k x k matrix P2 SO 

V. FURTHER REMARKS 

The procedure of finding k controls  in  the m-dimensional 
input space that preserve  controllability of a  system is 
called input  reduction. The  equivalent  procedure on  the 
output space is called output  reduction. Clearly, a  system 
(F,  G ,  H )  over an infinite field which is both  controllable 
and observable can be both  input  reduced  and  output 
reduced. The  resultant system ( F ,  GP,   QH)  is called ex- 
ternally reduced: it possesses the smallest number of inputs 
and  outputs for the given state space  structure. 

When  the  input and  output reducing  transformations 
are chosen  according  to  Corollary 1, an externally reduced 
system ( F ,  GP,   QH) can be represented  according to  either 
canonical  form by appropriate choices or  coordinate  trans- 
formations of the state space. When the  canonical  form of 
Corollary la) is chosen, Q H T - '  will have arbitrary  param- 
eters ; when the  canonical  form of Corollary lb) is chosen, 
T G P  will have arbitrary elements. 

The  transformation T, P : (F>  G )  + (FI> GI) is, in general, 
not  an  isomorphism  and  the systems ( F ,  G) and ( F I ,  GI) 
are  not  internally  isomorphic since P takes an nvdimen- 
sional  subspace of V" into  a k( I m)-dimensional  subspace 
of V". The same, of course,  holds for T,  Q : ( F ,  H )  + (F,, HI ) .  

It is possible, however, to extend  the  transformations P 
and Q by adjoining m - k linearly independent  columns  to 
P and p - k linearly independent  rows  to Q. Thus, let 

P = [P, p ]  and Q = [i] for H and so that H is an 

nz x m nonsingular  matrix  and Q is a p x p nonsingular 
matrix. The  matrices P and define coordinate changes 
in  the  input space and  output space, respectively, and  the 
transformations 

T, P : (F ,  G )  + (Fr, Gr) 
where 

GI = [GI, TGH] 
and 

T. Q : ( F ,  H )  + (Fl ,  R,) 

are isomorphisms.  Such coordinate  transformations  may 
be  very  useful in a variety of computational  applications 
of linear systems  theory. 

VI. CONCLUSION 

It is shown in this paper  that for a  controllable  and  ob- 
servable  system (F, G, H )  defined  over an   inh i te  field, a 
reduction of the  input  and  output spaces  without losing 
controllability  or observability can  be  attained by taking 
appropriate  linear  combinations of the existing inputs  and 
outputs:  the  minimal  number of inputs  and  outputs  in  the 
reduced  system  (which can always  be attained) is indepen- 
dent of the specific matrices G and H and is equal to  the 
number of invariant factors of F .  This  reduction  cannot  be 
effected  when the field  is finite and is therefore invalid for 
certain  types of finite state machines.  An  algorithm is also 
presented which systematically constructs  the  reducing 
transformations while simultaneously  taking the  resultant 
system into  a  canonical  form. 

Since  many  control  problems  depend exclusively on  the 
properties of controllability  and observability, the  input 
and  output  reduction  has  both  theoretical  and  practical 
applications.  On  the  theoretical side, it may be assumed 
(frequently with  considerable simplification of the analysis) 
that, given a  controllable and observable  system (.F infinite), 
it is reduced, i.e.,  it possesses the minimal  number  of 
inputs  and  outputs.  It  can  further be assumed that  the 
system is in canonical  form,  thus simplifying the  computa- 
tion. On the  practical side, it can be  expected that  control 
hardware  may  be  saved by lumping  inputs  (outputs) in the 
specified way. This  may be particularly desirable when 
constructing  feedback  compensators. 
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APPENDIX 
EXISTENCE OF MINIMAL GENERATING SETS 

Let F be  a  linear operator  on  an n-dimensional vector 
space V" and let g, , . . . , g, be a set of vectors in I f "  with 
linear  span Y(G) .  Denote by $9.cGl the  minimal  polynomial 
of L?(G), i.e., the monic  polynomial cp of smallest degree 
such that cp(F)c = 0, for every vector t' E Y(G). Thus $,(,, 
is the  minimal  polynomial of the  subspace of V" generated 
by the set {g ,  ~. . . ,g,]. Also, for c E V": denote by cpc the 
minimal  polynomial of E .  

The following lemma, the  proof of which has been given 
elsewhere [lo], states  that, except for the case when the 
underlying field is h i t e ,  the  subspace Y ( G )  always con- 
tains  a vector z, such that cp, = tjp(,). (In fact, when ,F is 
the field of the real or complex numbers,  almost every 
vector c E 9 ( G )  has  this  property.) Using this fact it will 
be shown  (Theorem 4) that, except for the case of a finite 
field, one  can always find in the linear  span of a  generating 
set of an  invariant  subspace I a  minimal  generating set. 

Lemma 2 
Let V" be an n-dimensional vector space  over an infinite 

field  let F be a  linear operator  on V", and let g, ~ . . . , g, 
be a set of vectors in V" with linear  span Y(G).  Then  there 
exists z! E 9 ( G )  such that c p V  = $9.cG). 

Theorem 4 
Let V" be an n-dimensional vector space over an infinite 

field  let F be a  linear operator  on V", and let g,, . . . , g ,  E V" 
be a  generating set of vectors for V". 

Then  there exists in Y ( G )  a set of vectors E,,. . . ,g, 
which is a  minimal  generating set for V". 

Proof: Let cp,,. . . , cp, be the  minimal  polynomials of 
g,, . . . , g, and let $, be  their least common  multiple. Since 
the set g,, . . . , g, generates V", it is clear that $, = $, the 
minimal  polynomial of V" (relative to F ) .  By Lemma 2 
there exists a vector gl  E 9 ( G )  whose minimal  polynomial 
'pi, coincides with $,. If p ,  is the  degree of $,, it follows 
that  the  vectors E l ,  F g l ,  . , F P 1 - ' g l  are linearly indepen- 
dent  and  span a cyclic invariant  subspace I ,  of V". Let $, 
be the  minimal  polynomial of V" (mod 11) and let q l , I , ,  . . . , 
(P,,~, be the  minimal  polynomials of g , ,  . . . , g, (mod I , ) .  
Then $, is the least common  multiple of ql,I1 ~ . . . ~ (P~,,~, 
and by Lemma 2 there exists a vector g, E Y ( G )  whose 
(relative)  minimal  polynomial  (mod 11)  is $,. If p ,  is the 
degree of $*, we have g,, F g , , .  . . , F p 2 -  'E, span  a cyclic 
invariant  subspace I ,  of V" (mod Zl). Thus 8, E I ,  + I, and 
the p1 + p 2  vectors g1,-..,FPI-'- g1,g2,....FP2-1g2 are 
linearly independent. 

This  procedure  can be continued  until  there  are k vectors 
g l , . . . , g ,~Y(G)  (with g, E I , : ~ , E I ~  + I, : . . . .~ ,EI ,  + 
I, + . . .  + Ik) such that g l , ~ ~ ~ ~ F p l ~ l ~ , , ~ ~ ~ , g ~ , ~ ~ ~ ~  
FPk- 'gk  are linearly independent vectors which span V" 
(i.e., pi = n ) .  Thus g,, . . . , E, form a  generating set for 
V". That  this  generating set is minimal follows from the 
fact that $,,. . . , $, are  the  invariant  factors of F [6].  In 
fact, suppose  there exists any  smaller  generating set for V" : 
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it, contradicting  the  invariance of the  polynomials $i. This 
completes  the proof. 

That  Theorem 4 is not valid for finite fields (a  direct 
consequence of the fact that Lemma 2 is not valid in this 
case) is illustrated by the following example. Let V" be a 
(four-dimensional) vector space over 2, (the integers 
modulo 2). Let e , ,  . . . , e,  be a basis for if" and let F be a 
linear operator in I f "  such  that Fe ,  = e,, Fez = e ,  + e, ,  
F e ,  = e 3 ,   F e ,  = 0. Let g,: g, be vectors in V": where 
g, = e ,  + e3 and g, = e3 + e4 .  Then cpg, = (x + l)(s' + 
x + l), qg2 = x(x + 1): and, consequently, is the least 
common  multiple (cpgl ,  qg,) = x(x + l)(x' + x + 1). Thus 
the set (g ,  ,g2} generates V4, and so does  the vector 
L' = e, + e,  + e,. However, no single vector in 9 ( G )  
generates V4 since the only nonzero vectors in Y ( G )  are 
g,, g, and g, = g ,  + g, = e, + e4 with cpg3 = s(x2 + x + 1). 
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